
Tin Marković, Booking Team Lead

 Don’t Talk, Scheme

Services and OpenAPI

2

Introduction
 Presentation and Examples
 Services are part of everyday work
 Architecture independent talk
 Very technical
 Principles apply outside of examples

3

Speaker
 https://tinthe.dev
 Tin

 Team Lead at Kiwi.com

 Software Architecture as passion

 Experiences working big projects (edX, Texas U, Kiwi)

 Where do I fit in the Kiwi picture?

4

Company: Kiwi.com
 Making travel better
 Our vision is to make travelling simple and
accessible to everyone

 Stack: Python and friends :)
 Very technologically oriented

5

Abstract
 Services are developed by different people
 Communicating code is less safe than sharing it
programmatically

 Protect yourself from misunderstandings and problems
 Keep many different services, but share important code
 Giant consistency and cooperation wins, easier
maintenance

6

Overview: Presentation
 Schema and how to do it properly
 API-first and consistent, change-resistance
 Schema language and tooling
 Enforced or useless, Connexion
 Service based architectures, Flask
 Sharing schema, module approach
 Conclusions, how does it all work together

7

Overview: Examples
 Python, using Connexion (Flask + Swagger/
OpenAPI)

 Birds as motif, watching and keeping
 Made up example, real use-cases

8

API
 Application Programming Interface
 Most often used in context of web
 API is a product, treat it as such

9

Schema
 The word schema comes from the Greek word
σχήμα (skhēma)

 Means shape, or more generally, plan
 You wouldn't let a doctor "wing" your operation
 Plan first, do after
 Concisely shape ideas and structure APIs

10

Planning with Schema
 Adopt an API-first approach, scheme it out,
then program

 Get early review feedback from peers and
client developers

 Clear separation of WHAT vs. HOW concerns
 "agile" may be good, "reckless" is def. not

11

Schema in OpenAPI/Swagger
 OpenAPI formerly Swagger Specification
 Standard, language-agnostic interface to
RESTful APIs

 Basic concepts:
 parameters
 paths
 definitions

 metadata/headers
 request/response
 references ($ref)

12

Example: Schema of our bird app

< show compiled and formatted schema >

13

Tooling of OpenAPI/Swagger
 Swagger UI
 Online resources
 Wide community, all over
 Connexion
 YAML or JSON

14

Why YAML
 More human approachable
 Less programmer noise
 Easy to use for tech writers
 Opinion/Taste

15

Connexion
 Framework on top of Flask
 Automatically handles HTTP requests based
on OpenAPI/Swagger

 API described in YAML format

16

Flask
 Python library/framework
 Light, fast, minimally opinionated
 Rich tooling, flexibility

17

Connexion and Flask
 Allow many smaller and flexible services
 Allow for as little bloat as possible
 Connexion for parsing and working schema
 Simplicity allows for custom code

18

Enforced or useless
 Schema is a great design and plan
 Plans fall apart, documentation as well
 Programmaticaly enforce API schema
 Unless it passes, it doesn't work
 Forget about outdated schema

19

Example: App setup and framework

< overview of the simple app >

20

Schema sharing: Reasoning
 Use bundling code to reuse schema
 Reasons:

 Having a separate repo/module
 Ownership of API is more explicit
 Review schema independent of code
 Assure contract is intact

21

Schema sharing: Execution
 Bundling several schemata together
 Parsing them as a single entity
 Full link expansion (new!)

22

Example: Schema sharing

 < demo of schema bundling >

23

Schema sharing: Future
 How to do even more?
 Multi-team access — generate code
 Separation of concerns

 Keep schema versioned and secure
 Linting — speccy

 Lint the schema, so it's up to standard
 Share best patterns with the world/team

24

Product
 Multiple services using the same schema
elements to work

 Bound via code integration and tests
 Important schema changes can be audited
more carefully

 Terminology matches the actual production
code

25

Example: Birdy Product

 < demo the two applications >

< demo reusing returned objects >

26

Conclusions
 API and schema first, it's important part of product

 Force things via code, it will then self-validate

 Reuse and DRY terminology/schema, not just code

 Tight interface will pay for itself many times over

27

How to Start
 Call to Action: Use tools, expand them
 Adapt your applications tools for Schema:

 OpenAPI or JSONschema or...
 A lot of it is process - establish it!
 Separate schema into separate repo and version it
 API specification from "BS" - Phil Sturgeon

 https://blog.apisyouwonthate.com/creating-api-
specifications-from-bulls-t-f5a54c005135

28

Resources
 Example application repo:

 https://tinthe.dev/talks/schema-composition
 https://github.com/TinMarkovic/dont_talk_scheme

 Keywords:
 OpenAPI, Swagger, Connexion, Flask, Speccy

 Useful links:
 blog.apisyouwonthate.com
 opensource.zalando.com/restful-api-guidelines

https://tinthe.dev/talks/schema-composition

ANY QUESTIONS?
You can find me at tinthe.dev

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

