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Services and OpenAPI
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Introduction
 Presentation and Examples
 Services are part of everyday work
 Architecture independent talk
 Very technical
 Principles apply outside of examples
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Speaker
 https://tinthe.dev
 Tin

 Team Lead at Kiwi.com

 Software Architecture as passion

 Experiences working big projects (edX, Texas U, Kiwi)

 Where do I fit in the Kiwi picture?



4

Company: Kiwi.com
 Making travel better
 Our vision is to make travelling simple and 
accessible to everyone

 Stack: Python and friends :)
 Very technologically oriented
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Abstract
 Services are developed by different people
 Communicating code is less safe than sharing it 
programmatically

 Protect yourself from misunderstandings and problems 
 Keep many different services, but share important code
 Giant consistency and cooperation wins, easier 
maintenance
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Overview: Presentation
 Schema and how to do it properly
 API-first and consistent, change-resistance
 Schema language and tooling
 Enforced or useless, Connexion
 Service based architectures, Flask
 Sharing schema, module approach
 Conclusions, how does it all work together
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Overview: Examples
 Python, using Connexion (Flask + Swagger/
OpenAPI)

 Birds as motif, watching and keeping
 Made up example, real use-cases



8

API
 Application Programming Interface
 Most often used in context of web
 API is a product, treat it as such
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Schema
 The word schema comes from the Greek word 
σχήμα (skhēma)

 Means shape, or more generally, plan
 You wouldn't let a doctor "wing" your operation
 Plan first, do after
 Concisely shape ideas and structure APIs
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Planning with Schema
 Adopt an API-first approach, scheme it out, 
then program

 Get early review feedback from peers and 
client developers

 Clear separation of WHAT vs. HOW concerns
 "agile" may be good, "reckless" is def. not
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Schema in OpenAPI/Swagger
 OpenAPI formerly Swagger Specification 
 Standard, language-agnostic interface to 
RESTful APIs

 Basic concepts:
 parameters
 paths
 definitions

 metadata/headers
 request/response
 references ($ref)
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Example: Schema of our bird app

< show compiled and formatted schema >
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Tooling of OpenAPI/Swagger
 Swagger UI
 Online resources
 Wide community, all over
 Connexion
 YAML or JSON
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Why YAML
 More human approachable
 Less programmer noise
 Easy to use for tech writers
 Opinion/Taste
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Connexion
 Framework on top of Flask
 Automatically handles HTTP requests based 
on OpenAPI/Swagger 

 API described in YAML format
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Flask
 Python library/framework
 Light, fast, minimally opinionated
 Rich tooling, flexibility
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Connexion and Flask
 Allow many smaller and flexible services
 Allow for as little bloat as possible
 Connexion for parsing and working schema
 Simplicity allows for custom code
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Enforced or useless
 Schema is a great design and plan
 Plans fall apart, documentation as well
 Programmaticaly enforce API schema
 Unless it passes, it doesn't work
 Forget about outdated schema
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Example: App setup and framework

< overview of the simple app >
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Schema sharing: Reasoning
 Use bundling code to reuse schema
 Reasons:

 Having a separate repo/module
 Ownership of API is more explicit
 Review schema independent of code
 Assure contract is intact
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Schema sharing: Execution
 Bundling several schemata together
 Parsing them as a single entity
 Full link expansion (new!)
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Example: Schema sharing

    < demo of schema bundling >
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Schema sharing: Future
 How to do even more?
 Multi-team access — generate code
 Separation of concerns

 Keep schema versioned and secure
 Linting — speccy

 Lint the schema, so it's up to standard
 Share best patterns with the world/team



24

Product
 Multiple services using the same schema 
elements to work

 Bound via code integration and tests
 Important schema changes can be audited 
more carefully

 Terminology matches the actual production 
code
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Example: Birdy Product

  <  demo the two applications >

< demo reusing returned objects >
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Conclusions
 API and schema first, it's important part of product

 Force things via code, it will then self-validate

 Reuse and DRY terminology/schema, not just code

 Tight interface will pay for itself many times over
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How to Start
 Call to Action: Use tools, expand them
 Adapt your applications tools for Schema:

 OpenAPI or JSONschema or...
 A lot of it is process - establish it!
 Separate schema into separate repo and version it
 API specification from "BS" - Phil Sturgeon

 https://blog.apisyouwonthate.com/creating-api-
specifications-from-bulls-t-f5a54c005135
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Resources
 Example application repo: 

 https://tinthe.dev/talks/schema-composition
 https://github.com/TinMarkovic/dont_talk_scheme

 Keywords: 
 OpenAPI, Swagger, Connexion, Flask, Speccy

 Useful links:
 blog.apisyouwonthate.com
 opensource.zalando.com/restful-api-guidelines

https://tinthe.dev/talks/schema-composition


ANY QUESTIONS?
You can find me at tinthe.dev

Thanks!
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