
Tin Marković, Booking Team Lead

 Don’t Talk, Scheme

Services and OpenAPI

2

Introduction
 Presentation and Examples
 Services are part of everyday work
 Architecture independent talk
 Very technical
 Principles apply outside of examples

3

Speaker
 https://tinthe.dev
 Tin

 Team Lead at Kiwi.com

 Software Architecture as passion

 Experiences working big projects (edX, Texas U, Kiwi)

 Where do I fit in the Kiwi picture?

4

Company: Kiwi.com
 Making travel better
 Our vision is to make travelling simple and
accessible to everyone

 Stack: Python and friends :)
 Very technologically oriented

5

Abstract
 Services are developed by different people
 Communicating code is less safe than sharing it
programmatically

 Protect yourself from misunderstandings and problems
 Keep many different services, but share important code
 Giant consistency and cooperation wins, easier
maintenance

6

Overview: Presentation
 Schema and how to do it properly
 API-first and consistent, change-resistance
 Schema language and tooling
 Enforced or useless, Connexion
 Service based architectures, Flask
 Sharing schema, module approach
 Conclusions, how does it all work together

7

Overview: Examples
 Python, using Connexion (Flask + Swagger/
OpenAPI)

 Birds as motif, watching and keeping
 Made up example, real use-cases

8

API
 Application Programming Interface
 Most often used in context of web
 API is a product, treat it as such

9

Schema
 The word schema comes from the Greek word
σχήμα (skhēma)

 Means shape, or more generally, plan
 You wouldn't let a doctor "wing" your operation
 Plan first, do after
 Concisely shape ideas and structure APIs

10

Planning with Schema
 Adopt an API-first approach, scheme it out,
then program

 Get early review feedback from peers and
client developers

 Clear separation of WHAT vs. HOW concerns
 "agile" may be good, "reckless" is def. not

11

Schema in OpenAPI/Swagger
 OpenAPI formerly Swagger Specification
 Standard, language-agnostic interface to
RESTful APIs

 Basic concepts:
 parameters
 paths
 definitions

 metadata/headers
 request/response
 references ($ref)

12

Example: Schema of our bird app

< show compiled and formatted schema >

13

Tooling of OpenAPI/Swagger
 Swagger UI
 Online resources
 Wide community, all over
 Connexion
 YAML or JSON

14

Why YAML
 More human approachable
 Less programmer noise
 Easy to use for tech writers
 Opinion/Taste

15

Connexion
 Framework on top of Flask
 Automatically handles HTTP requests based
on OpenAPI/Swagger

 API described in YAML format

16

Flask
 Python library/framework
 Light, fast, minimally opinionated
 Rich tooling, flexibility

17

Connexion and Flask
 Allow many smaller and flexible services
 Allow for as little bloat as possible
 Connexion for parsing and working schema
 Simplicity allows for custom code

18

Enforced or useless
 Schema is a great design and plan
 Plans fall apart, documentation as well
 Programmaticaly enforce API schema
 Unless it passes, it doesn't work
 Forget about outdated schema

19

Example: App setup and framework

< overview of the simple app >

20

Schema sharing: Reasoning
 Use bundling code to reuse schema
 Reasons:

 Having a separate repo/module
 Ownership of API is more explicit
 Review schema independent of code
 Assure contract is intact

21

Schema sharing: Execution
 Bundling several schemata together
 Parsing them as a single entity
 Full link expansion (new!)

22

Example: Schema sharing

 < demo of schema bundling >

23

Schema sharing: Future
 How to do even more?
 Multi-team access — generate code
 Separation of concerns

 Keep schema versioned and secure
 Linting — speccy

 Lint the schema, so it's up to standard
 Share best patterns with the world/team

24

Product
 Multiple services using the same schema
elements to work

 Bound via code integration and tests
 Important schema changes can be audited
more carefully

 Terminology matches the actual production
code

25

Example: Birdy Product

 < demo the two applications >

< demo reusing returned objects >

26

Conclusions
 API and schema first, it's important part of product

 Force things via code, it will then self-validate

 Reuse and DRY terminology/schema, not just code

 Tight interface will pay for itself many times over

27

How to Start
 Call to Action: Use tools, expand them
 Adapt your applications tools for Schema:

 OpenAPI or JSONschema or...
 A lot of it is process - establish it!
 Separate schema into separate repo and version it
 API specification from "BS" - Phil Sturgeon

 https://blog.apisyouwonthate.com/creating-api-
specifications-from-bulls-t-f5a54c005135

28

Resources
 Example application repo:

 https://tinthe.dev/talks/schema-composition
 https://github.com/TinMarkovic/dont_talk_scheme

 Keywords:
 OpenAPI, Swagger, Connexion, Flask, Speccy

 Useful links:
 blog.apisyouwonthate.com
 opensource.zalando.com/restful-api-guidelines

https://tinthe.dev/talks/schema-composition

ANY QUESTIONS?
You can find me at tinthe.dev

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

